

THE DEVELOPMENT OF INTAKE SYSTEM IN INTERNAL COMBUSTION ENGINE IN STUDENT-CLASS VEHICLE

Student of the 2nd course: I.I.Tolstykh Scientific supervisor: D. V. Vavilov, PhD in Engineering

CADFEM

CADFEM is one of the pioneers of numerical simulation based on the Finite Element Method.

ANSYS software was the main focus and purpose of our internship.

Internship plan

- The study of the company CADFEM methods for solving engineering problems in the software ANSYS
- The study of the company CADFEM techniques and technology solutions of multiphysics problems
- The study of methods of parametric and topological optimization for solving problems in ANSYS
- The development of optimization model of synthesis of the internal combustion engine power system parameters

Topological optimization

The aim of optimization of the topology:

- To minimize the compliance means to maximize the global stiffness. The most common objective function in topology optimization is the energy of the elastic compliance.
- To get the distribution of material that provides optimum part stiffness.

Some examples of topological optimization

Source: ANSYS

Source: CADFEM / DLR

Master thesis

THEDEVELOPMENTOFINTAKESYSTEMININTERNALCOMBUSTIONENGINEINSTUDENT-CLASSVEHICLE

The rules of competition:

- The limit of the engine capacity is up to 610 cm^{3;}
- the appropriate fuel type is petrol;
- The noise level mustn't exceed the 110 dB threshold;
- the presence of 20 mm air restrictor is in the intake system.

Sample of the air intake system

The engineering methodology

The use of 3D-scanner for determining the connection between dimensions and geometric constraints is associated with the layout of the power supply system

The engineering methodology

The optimizing criteria:

- The reduction of nonuniformity of the field of flow rates
- the reduction of pressure loss (system resistance)

Visualization of the results of numerical modeling for gas flow in the pipe

CONCLUSIONS

The model obtained by modifying the geometry of construction was able to reduce the resistance to 18.2% in comparison with the original design (to 345 Pa) and nonuniform flow is from 46% to 20.3%.

Therefore the amount of air entering the engine cylinders will increase. The engine power and fuel consumption losses will be minimized.

3d model

The results of internship

- Methods for solving engineering problems studied in the ANSYS software
- The technique and technology solutions of studied multiphysics problems
- Intake pipe model was created and topologically optimized by ANSYS

