ПРОГРАММА
Кандидатского экзамена

05.02.13 Машины, агрегаты и процессы (по отраслям)

Красноярск – 2017
Введение

В основу настоящей программы положены следующие дисциплины: современные технологии переработки нефти и газа; характеристики оборудования отрасли; конструкционные материалы для оборудования нефтегазопереработки; гидромеханические процессы и аппараты; надежность оборудования на всех стадиях жизненного цикла; технология производства нефтегазоперерабатывающего оборудования; механика разрушения; методы планирования и обработки результатов экспериментов.

Программа разработана экспертным советом Высшей аттестационной комиссии Министерства образования Российской Федерации по мачинностроению при участии Российского государственного университета нефти и газа им. И.М.Губкина, ОАО «ВНИИнефтемаш» и Уфимского государственного нефтяного технического университета.

1. Технология переработки нефти

Нефть: теория происхождения и элементный состав нефти.
Три основные схемы переработки нефти. Основные блоки НПЗ.
Подготовка нефти к переработке. Методы разрушения эмульсий. Виды установок обессоливания и обезвоживания.
Методы испарения углеводородного сырья. Первая переработка нефти. Вакуумная переработка нефти.
Термохимические процессы.
Каталитический крекинг.
Каталитический гидроочистка.
Замедленное коксование.

2. Общая характеристика оборудования отрасли

Классификация оборудования.
Основные требования, предъявляемые к машинам и агрегатам.
Характерные особенности эксплуатации машин и агрегатов.

3. Конструкционные материалы, применяемые для изготовления оборудования

Классификация материалов.
Черные металлы. Углеродистая сталь (классификация, маркировка, область применения).
Легированная сталь (классификация, маркировка, область применения).
Цветные металлы и сплавы.
Неметаллические материалы (неорганические материалы, КМ на органической основе).
Защита от коррозии.

4. Теплообменные аппараты

Основы теории теплообмена.
Назначение, выбор и классификация теплообменных аппаратов.
Кожухотрубчатые теплообменные аппараты.
Элементы кожухотрубчатых теплообменных аппаратов. Особенности конструкций и расчет.
Интенсификация процесса теплообмена в кожухотрубчатых теплообменниках.
Теплообменные аппараты типа "труба в трубе".
Аппараты воздушного охлаждения.
Аппараты с поверхностью теплообмена, изготовленной из листового материала.
Теплообменники оросительные, погруженные, змеевиковые и блюнные.
Перспективные теплообменные техники.

5. Тепловые аппараты (печи, топки, котлы)

Классификация печей. Трубчатые печи. Классификация трубчатых печей.
Новые конструкции трубчатых печей. Печи бесшамотного горения.
Основные показатели работы трубчатых печей.
Горелки для трубчатых печей.

6. Массообменные аппараты (аппараты для массообменных процессов)

Понятие о массообменных процессах. Основы теории массопередачи.
Назначение процессов ректификации и абсорбции. Физические основы процессов. Классификация и конструкции массообменных аппаратов.
Экстракторы. Основы процесса. Классификация и принципы работы экстракторов. Методы расчета и особенности конструктивного исполнения.
Абсорберы. Назначение процесса адсорбции. Классификация аппаратов.
Сушатели. Назначение процесса сушки и его теоретические основы. Конструкции сушилок.
7. Гидромеханические процессы и аппараты
Классификация колонн и аппаратов. Сушка и основные закономерности процессов осушения, фильтрования, центрифугирования. Конструктивные особенности и расчет оборудования для разделения колонн и аппаратов. Мельницы, дробилки, классификаторы. Устройство и методы расчета комплексов, обеспечивающих эффективность совместной работы нескольких функциональных аппаратов. Сушность процесса и основные способы перемещивания. Конструктивные особенности и принципы выбора перемещающих устройств. Основные способы и закономерности процесса очистки газов. Конструктивные особенности газоочистительных аппаратов.

8. Оборудование для реализации гидравлических процессов
Трубопроводные системы. Классификация, категорийность, технологические и конструктивные особенности технологических (заводских) трубопроводных систем. Компенсация и самокомпенсация температурных деформаций. Конструктивные особенности и принципы выбора компенсаторов. Трубопроводная арматура. Принципиальная схема движения потоков в трубопроводной арматуре и анализ конструктивных особенностей трубопроводной арматуры. Дефекты и отказы, возникающие при эксплуатации трубопроводной арматуры. Технологичееские и конструктивные особенности и область применения резервуаров. Особенности эксплуатации резервуаров с плазующей крышкой и шаровых резервуаров. Классификация насосов и компрессоров. Конструктивные особенности объемных и динамических насосов и компрессоров. Специальные насосы. Конструкции уплотнений. Факторы и явления, приводящие к возникновению дефектов и отказов. Физическая сущность балансировки и центровки узлов и деталей насосно-компрессорных агрегатов. Основные способы балансировки и центровки узлов и деталей.

9. Обеспечение надежности оборудования на стадии проектирования изготовления и эксплуатации
Понятие надежности конструкции, методы определения интегрального параметра надежности и его составляющих на стадии проектирования. Общие принципы и методы проектирования оборудования. Понятие ресурса оборудования и методы его расчета для квазистатического и циклического нагружения. Накопление повреждений в конструкциях при наличии усталостных явлений. Напряженное деформированное состояние в тонкостенных оболочках. Толстостенные оболочки. Напряженные состояния. Методы увеличения несущей способности. Напряжения в соединениях оболочек.

10. Изготовление оборудования
Обеспечение качества функционирования сосудов и аппаратов переработки углеводородного сырья. Система управления качеством функционирования аппаратов на всех стадиях жизненного цикла. Система управления качеством как совокупность управляющего объекта и объекта управления. Информационные и технические мероприятия по обеспечению целей управления. Показатели качества функционирования аппаратов. Эксплуатационные показатели. Технологичность как показатель технического уровня аппаратов. Квалиметрический анализ аппаратов. Качественная оценка технического уровня аппаратов дифференциальным и комплексным методами. Показатели технологичности. Методы и способы обработки металлов давлением при формообразующих операциях изготовления базовых деталей нестационарной аппаратуры. Основные положения теории пластических деформаций металлов применительно к технологическим процессам ковки и штамповки. Элементы математической теории пластичности. Условия пластичности. Связь напряжений и деформаций при пластическом деформировании. Уравнения для решения задач обработки металлов давлением. Методы проектирования технологического процесса формоизменения операции. Механическая схема деформаций. Выбор температурно-химических параметров операций обработки металлов давлением. Функциональный анализ соединений и деталей аппаратуры. Установление причин связей функциональных параметров. Технологическая последовательность формирования геометрических параметров. Методы исследования отклонений.
Методы и способы обеспечения точности форм и размеров базовых деталей и соединений аппаратов. Обеспечение принципов взаимозаменяемости при сборке аппаратуры. Системный подход в решении задач точности. Математическое моделирование при обеспечении качества изготовления аппаратуры. Оптимизация технологических параметров процессов обработки металлов давлением. Численные методы расчета напряженно-деформированного состояния и температурных составляющих параметров изготовления и сборки корпусов аппаратуры. Прогнозирование точности. Построение математических моделей оптимизации последовательного, параллельного и смешанного комплексов. Оптимизация надежности. Особенности сборки свариваемых элементов в аппаратуре. Свариваемость сталей. Технология обработки изделий.
11. Обеспечение надежности на стадии эксплуатации

Принципы организации оценки технического состояния и ремонтных циклов.
Методы износа и методы их расчета.
Техническая диагностика. Методы реализации и приборное оснащение.
Обеспечение нормальной работы роторных агрегатов.

12. Техническая механика разрушения

Условия роста трещины.
Коэффициент интенсивности напряжений как основная характеристика трещины.
Критический коэффициент интенсивности напряжений. Уравнение Пирса для скорости роста трещины.
Трещиноватость сварных соединений.
Влияние на прочность разнородных соединений трещиночувствительных дефектов.
Распространение трещин в условиях механохимической коррозии.

13. Фрактально-синергетическая концепция механического поведения материалов

Особенности деформации и разрушения твердых тел на различных масштабных уровнях.
Кооперативное взаимодействие процессов деформации и разрушения материалов при механическом и тепловом воздействии.
Пределовая плотность энергии деформации как универсальный критерий локального и глобального разрушения.
Универсальность механического поведения усталостных трещин в сплавах.
Фрактальная механика разрушения.

14. Постановка экспериментов и обработка результатов исследования

Планирование экспериментов.
Статистическая обработка результатов измерений и оценка достоверности.

Основная литература

Промышленные приборы и средства автоматизации / [Текст] : справочник / Н. Я. Баранов и др.; под общ. ред. В. В. Черенков. - Л. :