Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина <u>Электротехнические комплексы и системы</u> (наименование)
Группа научных специальностей <u>2.4. – Энергетика и электротехника</u> шифр и наименование

Научная специальность <u>2.4.2 – Электротехнические комплексы и системы</u> шифр и наименование

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

составлена в соответствии с Федеральными государственными требованиями

Группа научных специальностей /научная специальность
<u>2.4. — Энергетика и электротехника/2.4.2 — Электротехнические комплексы и системы</u> шифр и наименование
Программу составили Пантелеев В.И
Тимофеев В.Н
Хацаюк М.Ю
Заведующий кафедрой электроэнергетики Пантелеев В.И Заведующий кафедрой электротехники Тимофеев В.Н
«»2022 г.
Рабочая программа обсуждена на заседании кафедры электроэнергетики
«» 2022 г. протокол №
на заседании кафедры электротехники
«» 2022 г. протокол №
Заведующий кафедрой электроэнергетики Пантелеев В.И Заведующий кафедрой электротехники Тимофеев В.Н Дополнения и изменения в учебной программе на 20/20 учебный год.
В рабочую программу вносятся следующие изменения:
В рассчую программу вносятся следующие изменения.
Рабочая программа пересмотрена и одобрена на заседании кафедры
«»20г. протокол №
<u></u>
Заведующий кафедрой
Внесенные изменения утверждаю:
Директор Политехнического института Первухин М.В.

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины.

Целью преподавания дисциплины является изучение общих закономерностей генерирования, преобразования, накопления, передачи и использования электрической энергии, а также принципов и средства управления объектами, определяющих функциональные свойства действующих или создаваемых электротехнических комплексов и систем. Дисциплина является базовой в системе подготовки специальности 2.4.2 — Электротехнические комплексы и системы в соответствии с Федеральными государственными требованиями.

1.2 Задачи изучения дисциплины.

1.3. Результатами изучения дисциплины являются освоение общих закономерностей построения и принципов и средств управления электротехническихкомплексов и систем генерирования электрической энергии, электроприводов, электроснабжения и электрооборудования — промышленного назначения, транспортных средств, аэрокосмической техники, морских и речных судов, служебных и жилых зданий, специальной техники, включая их компонентов — электромеханических и электромагнитных преобразователей, электрических и электронных аппаратов.

В результате освоения дисциплины обучающийся должен знать общие закономерности построения и принципы и средств управления электротехнических-комплексов и систем; уметь с системных позиций формулировать требования к электротехническимкомплексам и системам и выбирать адекватные методы их исследования; владеть современными методами и приёмами аналитического, компьютерного и экспериментального исследования электротехническихкомплексов и систем.

1.4 Место дисциплины (модуля) в структуре программы аспирантуры.

Дисциплина относится к базовой части образовательной компоненты учебного плана.

1.5 Особенности реализации дисциплины.

Дисциплина реализуетсяна русском языке. При реализации дисциплинывозможно применение ЭО и ДОТ.

2 Объем дисциплины (модуля)

	Всего,	Семестр
Desar serve Francis and comme	зачетных	
Вид учебной работы	единиц	
	(акад. часов)	
Общая трудоемкость дисциплины	72	
Контактная работа с преподавателем:	46	
занятия лекционного типа	30	
занятия семинарского типа	16	

в том числе: семинары	16		
практические занятия			
другие виды контактной работы			
Самостоятельная работа аспирантов:	26		
изучение теоретического курса (ТО)	26		
Вид промежуточной аттестации	экзамен		
(зачет, экзамен)			

3 Содержание дисциплины (модуля) 3.1 Разделы дисциплины и виды занятий (тематический план занятий).

№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционного типа (акад.час)	Занятия семинарского типа (Семинары и/или Практические занятия (акад.час))	Самостоя-
1	2	3	4	5
1	Специальные вопросы электромеханических преобразователей энергии	8	4	6
2	Вопросы теории электрических аппаратов	2	2	2
3	Современные способы и средства управления электротехническими комплексами и системами	8	4	6
4	Электротехнические комплексы систем электроснабжения	6	2	6
5	Электротехнические комплексы технологических установок	6	4	6

3.2 Занятия лекционного типа.

	№ pa3-	Объем в акад. часах		
№ п/п	дела дисци- плины	Наименование занятий	всего	в том числе в инновационной форме

1	1	Теория обобщённого электромеханического преобразователя энергии (ОЭМПЭ)	2	2
2	1	Уравнения трансформатора на основе уравнений ОЭМПЭ. Приведённый трансформатор. Основные характеристики трансформатора.		
3	1	Уравнения асинхронной машины на основе уравнений ОЭМПЭ. Основные характеристики асинхронной машины.		2
4	1	Уравнения синхронной машины на основе уравнений ОЭМПЭ. Основные характеристики синхронной машины.		2
5	2	Вопросы теории электрических аппаратов.	2	
6	3	Регулирование координат электроприводов постоянного и переменного тока: управляемый преобразователь — двигатель постоянного тока, преобразователь частоты — асинхронный двигатель, преобразователь частоты — синхронный двигатель.		
7	3	Системы подчиненного регулирования параметров электромеханической системы. Системы управления электроприводом с нечеткой логикой. Синтез фаззи-регуляторов.		2
8	3	Принцип векторного управления асинхронным и синхронным двигателями. Типовые структурные схемы его реализации. Преобразователи переменного напряжения в постоянное и постоянного в переменное.		2
9	3	Методы построения астатических наблюдате- лей состояния и нагрузки. Метод пространства состояний. Синтез модальных и полиномиаль- ных регуляторов.		2
10	4	Выбор систем и схем электроснабжения. Современные методы оптимизации систем электроснабжения, критерии оптимизации. Характерные схемы электроснабжения.		
11	4	Влияние качества электроэнергии на потребление электроэнергии и на производительность механизмов и агрегатов. Электромагнитная совместимость приёмников электрической энергии с питающей сетью.		2
12	4	Компенсация реактивной мощности. Основные направления развития компенсирующих устройств. Использование новых средств и технологий (FACTS, PMU, искусственный интеллект и др.) для обеспечения надёжности и управляемости систем электроснабжения		2

13	5	Индукционный нагрев. Достоинстве и недостатки. Циркуляция металла. Расчет тепловой энергии, необходимой для расплавления металла. Производительность. Коэффициент полезного действия. Расчет мощности. Расчет частоты питающего напряжения в установка индукционного нагрева и индукционных печах.	2
14	5	Магнитная гидродинамика и ее практические применение. Основные уравнения магнитной гидродинамики. Особенности взаимодействия электромагнитных, тепловых и гидродинамических полей.	2
15	5	Численные методы расчета электромагнитных полей. Метод конечных разностей. Метод конечных элементов. Средства, методы и особенности численного решения задач магнитной гидродинамики. Типы регуляторов, используемые в системе управления электрических печей.	2

3.3 Занятия семинарского типа

			Объе	Объем в акад. часах	
№ п/п	№ раздела дисциплины	Наименование занятий	всего	в том числе в инновационной форме	
1	1	Методы исследования характеристик ЭМПЭ: трансформаторов электрических машин постоянного и переменного тока		2	
2	1	Способы и средства регулирования частоты вращения электрических машин	2	2	
3	2	Методы расчёта электромагнитных аппаратов. Электродинамические усилия (ЭДУ) в проводниках переменного сечения, на переменном токе, Сила тяги электромагнитов постоянного и переменного тока, тяговая характеристика.		2	
4	3	Методы синтеза систем управления электроприводом с нечеткой логикой.	2	2	
5	3	Синтез модальных и полиномиальных регуляторов. Наблюдатели состояния полного порядка.	2	2	
6	4	Использование новых средств и технологий (FACTS, PMU, искусственный интеллект и др.) для обеспечения надёжности и управляемости систем электроснабжения		2	

7	5	Численные методы расчета электромагнитных полей. Метод конечных разностей. Метод конечных элементов.	2
8	5	Средства, методы и особенности численного решения задач магнитной гидроди-	2
		намики.	

4. Перечень учебно-методического обеспечения для самостоятельной работы аспирантов по дисциплине (модулю)

- 1. Гольдберг О.Д. Электромеханика: учеб. для студ. вузов / О.Д. Гольдберг, С.П. Хелемская; под ред. О.Д. Гольдберга. М.: Изд. центр «Академия», 2007. 512 с.
- 2. Электрические и электронные аппараты: учебник для студ. высш. учеб. заведений. В 2
- т. Т.1. Электромеханические аппараты / [Е.Г. Акимов и др.]; под. ред. А.Г. Годжелло, Ю.К. Розанова. М.: Издательский центр «Академия», 2010. 352 с.;
- 3. Онищенко Г.Б. Теория электропривода М.: ООО «Образование и исследование», 2013. 352 с.
- 4. Анучин А.С. Системы управления электроприводов: учебник для вузов Москва: Издательский дом МЭИ, 2015. 374 с.
- 5. Кудрин Б.И. Электроснабжение промышленных предприятий: учебник 3-е изд. М.:Интермет Инжиниринг, 2007. 647 с.
- 6. Вольдек А.И. Индукционные магнитогидродинамические машины с жидкометаллическим рабочим телом. М.: Энергоатомиздат. 1984. 124 с.
- 7. Немков В.С. Теория и расчет устройств индукционного нагрева. Л: Энергоатомиздат. 1980. 280 с.
- 8. Пантелеев В.И. Электрические машины и микромашины.— Красноярск: ИПК СФУ, 2022. 376 с.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

- 1. Гольдберг О.Д. Электромеханика: учеб. для студ. вузов / О.Д. Гольдберг, С.П. Хелемская; под ред. О.Д. Гольдберга. М.: Изд. центр «Академия», 2007. 512 с.
- 2. Электрические и электронные аппараты: учебник для студ. высш. учеб. заведений. В 2
- т. Т.1. Электромеханические аппараты / [Е.Г. Акимов и др.]; под. ред. А.Г. Годжелло, Ю.К. Розанова. М.: Издательский центр «Академия», 2010. 352 с.;
- 3. Терехов В.М., Осипов О.И. Системы управления электроприводами. М.: «Академия», 2005. 304 с.
- 4. Белов М.П., Новиков В.Л., Рассудов Л.Н. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов. М.: «Академия», 2004. 576 с.
- 5. Онищенко Г.Б. Теория электропривода М.: ООО «Образование и исследование», 2013. 352 с.
- 6. Анучин А.С. Системы управления электроприводов: учебник для вузов Москва: Издательский дом МЭИ, 2015. 374 с.
- 7. Охорзин В.А., Сафонов К.В. Теория управления: [учебник для вузов] СанктПетербург: Москва: Краснодар: Лань, 2014. 224 с.
- 8. Карташов И.И. Качество электроэнергии в системах электроснабжения. Способы его контроля и обеспечения: учебное пособие. М.: Изд-во МЭИ, 2001. 72 с.

- 9. Кудрин Б.И. Электроснабжение промышленных предприятий: учебник 3-е изд. М.:Интермет Инжиниринг, 2007. 647 с.
- 10. Вольдек А.И. Индукционные магнитогидродинамические машины с жидкометаллическим рабочим телом. М.: Энергоатомиздат. 1984. 124 с.
- 11. Болотов А.В. Электротермические установки. Алма-Ата: «Мектеп». 1983. 335с.
- 12. Слухоцкий А.С. Установки индукционного нагрева. Л: Энергоатомиздат. 1981. 328 с.
- 13. Немков В.С. Теория и расчет устройств индукционного нагрева. Л: Энергоатомиздат. 1980. 280 с.
- 14. Пантелеев В.И. Электрические машины и микромашины.— Красноярск: ИПК СФУ, 2022.-376 с.

6. Перечень ресурсов информационно-телекоммуникационной сети Интернет, необходимых для освоения дисциплины (модуля)

Электронная информационно-образовательная среда университета обеспечивает доступ аспиранту ко всем электронным ресурсам, которые сопровождают научно-исследовательский и образовательный процессы подготовки научных и научно-педагогических кадров высшей квалификации.

7. Методические указания для аспирантов по освоению дисциплины (модуля)

Самостоятельная работа аспирантов состоит в детальном изучении теоретического курса посредством использования приведённой в п.4 литературы с использованием литературы из п. 5 и отечественных и зарубежных периодических изданий по профилю специальности..

Учебно-методические материалы для самостоятельной работы аспирантов из числа инвалидов и лиц с ограниченными возможностями здоровья представляются в формах, адаптированных к ограничениям их здоровья и восприятия информации в зависимости от нозологии:

Для лиц с нарушениями зрения:

в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)

Системы автоматизированного проектирования (САД-системы):

- SolidWorks, Kompas3D твердотельное моделирование и автоматизированная выработка конструкторской документации;
 - AutoCad- двухмерное и трехмерное проектирование.

Система автоматизированного инжиниринга и обработки данных (САЕ-системы):

- Комплекс программ ANSYS (MechanicalAPDL, CFX, Fluent, Maxwell, OpenFOAM, Elmer, GetDP и др.) численное моделирование физических процессов, решение задач напряженно-деформированного состояния, вычислительной гидродинамики, термодинамики, расчет электрического и магнитного поля;
- TTSolver система для online-расчетов теплотехнических задач на базе разработанного нестационарного нелинейного одномерного численного решателя;
- MathCad, MatLab- системы компьютерной алгебры, автоматизация инженерных расчетов;
- MatLabSimulink, SimInTec, ANSYSSimplorer системы расчета и анализа динамических систем.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Для проведения занятий лекционного типа имеется набор демонстрационного оборудования (ММО) и учебно-наглядного пособия (презентации), обеспечивающие тематические иллюстрации, соответствующие рабочей учебной программе дисциплины.

Перечень материально-технического обеспечения, необходимого для реализации программы магистратуры, включает в себя компьютерные классы, оснащенные персональными компьютерами.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой, при этом обеспечена возможность подключения к сети «Интернет», а также обеспечен доступ в электронную информационно-образовательную среду университета.

Дисциплина обеспечена необходимым комплектом лицензионного программного обеспечения (состав определен в п.9.1 и подлежит ежегодному обновлению).

Обучающимся обеспечен доступ (удаленный доступ), в том числе в случае применения электронного обучения, дистанционных образовательных технологий, к современным профессиональным базам данных и информационным справочным системам, состав которых определен в п.9.2 и подлежит ежегодному обновлению.