Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ

Директор пиститута

цветных петаллов и митериаловедения

В.Н. Баранов

подписталлов и митериаловедения

В.Н. Баранов

материаловедения

2022 г.

институт, реализураций программу аспирантуры

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ НОВЫЕ СПЛАВЫ ЦВЕТНЫХ МЕТАЛЛОВ И СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ИХ ОБРАБОТКИ

Дисциплина 2.1.4 Новые сплавы цветных металлов и современные технологии их обработки

(наименование)

Группа научных специальностей 2.6 Химические технологии, науки о материалах и металлургия (шифр и наименование)

Научная специальность <u>2.6.4 Обработка металлов давлением</u> (шифр и наименование)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

составлена в соответствии с Федеральными государственными требованиями

Группа научных специальностей /научная специальность 2.6 Химические технологии, науки о материалах и металлургия /
2.6.4 Обработка металлов давлением
Программу составили Горбунов Ю.А.
фамилия, инициалы, подпись
Сидельников С.Б. фамилия, инициалы, подпись
Заведующий кафедрой (разработчик) Ворошилов Д.С. Норошилов фамилия, инициалы, подпись
«29» 04 2022 г.
Рабочая программа обсуждена на заседании кафедры (выпускающая)
« <u>25</u> » <u>04</u> 2022 г. протокол № <u>8</u>
Заведующий кафедрой (выпускающей) Ворошилов Д.С.
Дополнения и изменения в учебной программе на 20/20 учебный год. В рабочую программу вносятся следующие изменения:
В расочую программу вносятся следующие изменения.
Рабочая программа пересмотрена и одобрена на заседании кафедры
«»20г. протокол №
Заведующий кафедрой
Внесенные изменения утверждаю:
Директор института цветных металлов и материаловедения Баранов В.Н.
директор института цветных металлов и материаловедения варанов В.П. фамилия, инициалы, подпись

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины.

Цель преподавания дисциплины — дать развернутое представление о современных направлениях развития производства полуфабрикатов из сплавов цветных металлов в мире и России.

В программу включено рассмотрение наиболее актуальных проблем обработки новых материалов на различных технологических переделах при получении полуфабрикатов из цветных металлов и их сплавов.

1.2 Задачи изучения дисциплины.

- В соответствии с требованиями Федерального государственного образовательного стандарта задачами дисциплины являются формирование знаний, умений и навыков, отражающих необходимые компетенции:
- по выбору материала и режимов его обработки, исходя из планируемых условий эксплуатации и комплекса предъявляемых требований;
- выбор базового оборудования, необходимого для получения требуемого комплекса физико-механических характеристик полуфабрикатов, с учетом решения задач энерго- и ресурсосбережения, а также защиты окружающей среды от техногенных воздействий производства;
- выполнения исследований металлургических процессов на различных стадиях технологических переделов и качества металлопродукции;
- выбора методов анализа процессов, испытаний продукции и обработки результатов измерений и исследований.
- 1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения программы аспирантуры.

В результате изучения дисциплины аспирант должен знать:

- классификацию сплавов цветных металлов и их назначения для производства из них полуфабрикатов и изделий различного назначения;
- особенности обработки сплавов цветных металлов и применяемое оборудование;
- методы испытаний свойств полуфабрикатов и изделий из металлов и сплавов.

После изучения дисциплины аспирант должен уметь:

- анализировать процессы обработки металлов давлением и выбирать оборудование для их реализации;
- выбирать материалы для исследований, давать характеристику обрабатываемому металлу (сплаву) и определять его свойства;
- анализировать и описывать результаты исследований по обработке сплавов цветных металлов.

Аспирант должен иметь навыки:

- выполнения аналитических исследований процессов ОМД, оборудования и металлопродукции, проведения литературного и патентного поиска с применением информационных средств и технологий;
- выбора материала и режимов его обработки, исходя из условий его эксплуатации и комплекса предъявляемых требований;
- планирования и выполнения экспериментальных исследований процессов ОМД для выбранного сплава.

Аспирант должен обладать следующими компетенциями:

- способностью и готовностью теоретически обосновать и оптимизировать технологические процессы получения перспективных материалов и производство из них новых изделий с учетом последствий для общества, экономики и экологии;
- способностью и готовностью экономически оценивать производственные и непроизводственные затраты на создание новых материалов и изделий, проводить работу по снижению их стоимости и повышению качества;
- способность и готовность разрабатывать технологический процесс, технологическую оснастку, рабочую документацию, маршрутные и операционные карты для изготовления новых изделий из перспективных материалов.
 - 1.4 Место дисциплины (модуля) в структуре программы аспирантуры. Дисциплина относится к образовательной компоненте учебного плана.
 - 1.5 Особенности реализации дисциплины. Дисциплина реализуется на русском языке.

2 Объем дисциплины (модуля)

	D	Семестр		
	Всего,	3		
Вид учебной работы	зачетных			
Вид учестой рассты	единиц			
	(акад. часов)			
Общая трудоемкость дисциплины	2 (72)	2 (72)		
Контактная работа с преподавателем:				
занятия лекционного типа	0,5 (18)	0,5 (18)		
занятия семинарского типа				
в том числе: семинары				
практические занятия				
другие виды контактной работы				
Самостоятельная работа аспирантов:	1,5 (54)	1,5 (54)		
изучение теоретического курса (ТО)				
Вид промежуточной аттестации	зачет	зачет		
(зачет, экзамен)				

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий).

№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционного типа (акад.час)	Практические занятия (акад.час))	Самостоятель ная работа, (акад.час),
1	2	3	4	5
1	Общая характеристика сплавов цветных металлов и технологий их обработки	0,03 (1)	-	0,05(2)
2	Деформируемые алюминиевые сплавы	0,28 (10)	-	1,0 (36)
3	Сплавы других цветных металлов	0,19 (7)	-	0,45(16)

3.2 Занятия лекционного типа.

			Объем в акад. часах		
№ № раздела п/п дисциплины	Наименование занятий		в том числе		
		всего	В		
			инновационной		
1.	1	Введение. Основные области	1	-	
		применения сплавов цветных металлов и			
		их классификация. Ведущие мировые			
		разработчики и производители сплавов.			
2.	2	Алюминиевые сплавы	10	-	
3.	3	Сплавы легких цветных металлов	2	-	
4.	3	Сплавы тяжелых цветных металлов	2	-	
5.	3	Сплавы благородных металлов	1	-	
6.	3	Сплавы редких металлов	1	-	
7.	1, 2, 3	Заключение	1	-	

3.3 Практические занятия.

Учебным планом не предусмотрены

1. Перечень учебно-методического обеспечения для самостоятельной работы аспирантов по дисциплине (модулю)

В основу курса положены результаты авторских исследований, часть из которых являются материалами докторской диссертации. Для обучения также используются материалы публикаций в следующих периодических изданиях: «Металлы Евразии», «Цветные металлы», «Поиск», «Металлоснабжение», «Технология легких сплавов», «Цветная металлургия» и др; годовые отчеты и рекламные проспекты по направлениям деятельности фирм: "ALCOA", "ALCAN", "NIPPON LIGHT METALL Co", "PECHINE RHENALU" и др; техническая реклама ведущих мировых производителей оборудования и вспомогательных материалов, таких как "Маппеsmann Detag", "Hidro Aluminium", "Pirotek", "Fata Aluminium" и др.; видеоролики ведущих фирм мира.

2. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

Основная литература

- 1. Фридляндер И.Н. Современные алюминиевые, магниевые сплавы и композиционные материалы на их основе. Ж-Л «МиТОМ», 2002, №7.
- 2. Свариваемые алюминиевые сплавы в конструкциях транспортных средств. Гуреева М.А., Грушко О.Е., Овчинников В.В. Ж-л «Заготовительные производства в машиностроении», 2009, №3.
- 3. Филатов Ю.А., Плотников А.Д. Структура и свойства деформированных полуфабрикатов из алюминиевого сплава 01570С системы Al-Mg-Sc для изделия РКК «Энергия». Ж-Л «Технология легких сплавов», 2011, №2.
- 4. Алюминийлитиевые сплавы для самолетостроения. Хохлатова Л.Б., Колобнев Н.И., Оглодков М.С. и др. Ж-л «Металлург», 2012, №5.
- 5. Горбунов Ю.А. Применение изделий из алюминиевых сплавов при производстве и ремонте наземного и водного транспорта в РФ. Ж-л «ТЛС», 2015, №1.
- 6. Волкова Е.Ф., Рохлин Л.Л., Овсянников Б.В. Современные деформируемые магниевые сплавы: состояние и перспективы применения в высокотехнологичных отраслях промышленности.— Москва, ВИАМ, 2021.392 с.
- 7. Технологические основы производства длинномерных литых и деформированных полуфабрикатов из сплавов драгоценных металлов: монография / С. Б. Сидельников, Е. С. Лопатина, Н. Н. Довженко [и др.]. Красноярск: Сиб. федер. ун-т, 2022. 204 с.

Дополнительная литература

- 8. Сверхпластичность сплавов с ультрамелким зерном / И.И Новиков, В.К. Портной. М., Металлургия, 1981. 168 с.
- 9. Горбунов Ю.А. Физические основы пластической обработки быстрозакристаллизованных сплавов алюминия. Теоретические основы и технологические схемы компактирования и деформации: Учеб. пособие/ГАЦМи3. Красноярск, 1999. -204 с.

- 10. Горынин И.В. Исследования и разработки ФГУП ЦНИИ КМ «Прометей» в области конструкционных наноматериалов. Российские нанотехнологии. Исследования и разработки. 2007, № 3-4.
- 11. Каблов Е.Н. Авиационное материаловедение в XXI веке. Перспективы и задачи. Ж-л «Все материалы. Энциклопедический справочник», 2007, №1.
- 12. Горбунов Ю.А. Состояние и перспективы развития технологий производства деформированных полуфабрикатов из алюминиевых сплавов на предприятиях РФ. Цветные металлы 2010: Сборник докладов второго международного конгресса.- Красноярск: ООО «Версо», 2010, стр. 656-663.
- 13. Горбунов Ю.А. Состояние и проблемы развития производства алюминиевых сплавов с недендритной тиксотропной структурой и полуфабрикатов из них методами деформации в твердо-жидком состоянии. Цветные металлы 2011: Сборник докладов третьего международного конгресса.- Красноярск: ООО «Версо», 2011, стр. 573-579.
- 14. Каблов Е.Н. Стратегические направления развития материалов и технологий их переработки на период до 2030 года. ВИАМ. Научю-техн. сборник «80 лет. Авиационные материалы и технологии», 2012.
- 15. Луц А.Р., Галочкина И.А. Алюминиевые композиционные сплавы сплавы будущего. ФГБОУ ВПО СамГТУ, 2013.
- 16. Механические свойства алюминиевых сплавов: монография / Н.А. Грищенко, С. Б. Сидельников, И. Ю. Губанов [и др.]. Красноярск: Сиб. федер. ун-т, 2012. 196 с.
- 17. Производство ювелирных изделий из драгоценных металлов и их сплавов: учеб. /С.Б. Сидельников, И.Л. Константинов, Н.Н. Довженко [и др.] Красноярск: Сиб.федер. ун-т, 2015.- 380 с.
- 18. Технологические основы получения материалов и изделий из сыпучих отходов сплавов алюминия: монография / Н.Н. Загиров, Ю.Н. Логинов, С.Б. Сидельников, Е.В. Иванов // Красноярск : Сиб. федер. ун-т, 2019. 204 с.

3. Перечень ресурсов информационно-телекоммуникационной сети Интернет, необходимых для освоения дисциплины (модуля)

Обучающимся обеспечена возможность свободного доступа к фондам учебно-методической документации и интернет-ресурсам и имеют открытый доступ к базе Электронного каталога и полнотекстовой базе данных внутривузовских изданий (http://lib.sfu-kras.ru/); ресурсам виртуальных (http://lib.sfu-kras.ru/eresources/virtual.php); читальных залов (http://lib.sfu-kras.ru/ecollections/umkd.php); К видеолекциям учебным фильмам университета (http://tube.sfu-kras.ru/); К учебно-методическим материалам институтов.

Обучающимся предоставлены условия и возможности работы в режиме on-line с зарубежными и отечественными лицензионными информационными базами данных по профилю образовательных программ СФУ.

На сайте библиотеки все обучающиеся имеют доступ к дополнительному сервису – единый интегрированный поиск по всему объему

электронных ресурсов НБ СФУ (<u>http://libsearch.sfu-kras.ru/</u>), и к единой виртуальной справочной службе on-line.

4. Методические указания для аспирантов по освоению дисциплины (модуля)

Самостоятельная работа по дисциплине проводится в соответствии с рекомендациями, изложенными ниже.

Структурно самостоятельную работу аспирантов можно разделить на две части:

- самостоятельная работа под руководством преподавателя;
- самостоятельная работа, которую аспирант организует по своему усмотрению.

Самостоятельное изучение теоретического материала планируется с целью домашней проработки лекционного материала, а также углубленного изучения каждой темы. Самостоятельное изучение теоретического материала проводится с использованием рекомендуемой основной и дополнительной литературы. Второй формой самостоятельной работы является подготовка к практическим занятиям. Задание по этому виду работ, которое связано с подготовкой презентаций, докладов и публикаций по тематике его выпускной работы, студент получает на первом практическом занятии.

5. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)

- 1. Программное лицензионное обеспечение для работы на ПК.
- 2. Комплексы для расчета и моделирования процессов ОМД: Deform 3D, QFORM, MathCAD, Ansys и др.
- 3. Подсистемы и системы автоматизированного проектирования процессов ОМД.
- 4. Видеоролики с демонстрацией защит кандидатских диссертаций.

6. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Минимально необходимый для реализации основной образовательной программы перечень материально-технического обеспечения включает в себя:

- учебные аудитории, оборудованные мультимедийным демонстрационным комплексом;
- лаборатории кафедры ОМД (кузнечно-штамповочного производства, прокатно-прессово-волочильного производства, художественной ковки, ювелирных технологий, совмещенных методов обработки) и других кафедр ИЦМиМ (металловедения, литейного производства и др.), оборудование и приборы которых используются для проведения НИР.

Оснащение учебных кабинетов и лабораторий соответствует требованиям профессиональной подготовки и содержанию настоящей программы.