

Siberian Federal University

05.13.11 - Mathematical and software

support for computers, complexes and

computer networks

Course Guide

This course contributes to the requirements for the Degree of Candidate

of Science in Computer Science.

Krasnoyarsk, 2020.

1

1. Course Description

This course contributes to the requirements for the Degree of

Candidate of Science in Computer Science.

Title of the

Academic

Program

Postgraduate Programs in English “Mathematical and

software support for computers, complexes and computer

networks”

Type of the

course
core /mandatory

Course period

2 semesters

First semester: from October, the 1st to February, the 1st (18

weeks) Second semester: from February, the 1st to June, the

1st (18 weeks)

Study credits 6 ECTS credits

Duration 216 hours

Language of

instruction
English

Academic

requirements

− Master's Degree in Computer Science or equivalent

(transcript of records),

− good command of English (certificate or other official

document)

Prerequisites:

− Advanced knowledge of math, digital electronics,

programming skills.

2

1.1 Course overview

"Mathematical and software support of computers, complexes and computer
networks» is a core course.

The course is designed to develop the skills of graduate students in scientific

research in the field of modern trends and prospects for the development of

informatics and computing technology. The discipline reflects the main

achievements in the field of system and applied software for computer

architectures and computer networks at various levels of the hierarchy. When

considering the diversity of computer architectures, various options for

constructing mathematical and software tools are considered. Special attention is

paid to the development of new technologies and tools that ensure the creation of

operating systems and large software systems.

1.2 Special features

The course enables graduate students to work personally and as part of

groups for the development of mathematical and software for promising software

systems and computing systems. A graduate student will be able to go all the way

from the birth of a scientific idea to its implementation.

1.3 Course aims and objectives

Course Aim

The aim of the course is to training of highly qualified specialists who have
mastered the achievements of science and advanced practice and are able to
successfully carry out practical activities in the field of increasing the efficiency
and reliability of processing and transmission of data and knowledge in computers,
complexes and computer networks.

Course Objectives

• study of the most general patterns and development trends in the field of

mathematical and software support for computers, complexes and computer

networks.

1.4 Learning outcomes

By the end of the course, graduate students will know:

• methods of development and application of programming theory;

• methods of creating and maintaining software for various purposes;

3

• Methods and ways to improve the efficiency and reliability of processing

and transmission of data and knowledge in computers, complexes and computer

networks;

• research methods and experimental work in the field of software

development.

By the end of the course, students will be able to:

• create models, methods and algorithms for design, analysis, verification

and testing of programs and software systems;

• research programming languages and programming systems, program

semantics, database and knowledge management systems, symbolic computing

software systems, operating systems, human-machine interfaces; models,

methods, algorithms and software for computer graphics, visualization, image

processing, virtual reality systems, multimedia communication;

• explore models and methods for creating programs and software systems

for parallel and distributed data processing;

• create languages and tools for parallel programming;

• create models, methods, algorithms and software infrastructure for

organizing globally distributed data processing.

By the end of the course, students will possess:

• technologies for assessing the quality and standardization of software

systems;

• the ability to apply: knowledge in the field of mathematical and software

support for computers, complexes and computer networks;

• methods of expert assessment of various types of project assignments and

development of recommendations for the creation of new and improvement of

existing structures, mechanisms and models of mathematical and software for

computers, complexes and computer networks, in order to increase the efficiency

and reliability of their functioning;

• technologies for organizing and managing research and development and

expert and analytical work using advanced knowledge in the field of

mathematical and software support for computers, complexes and computer

networks, including the fields of education, law, defense, health care and

environmental protection.

4

2. Course Lecturer, Contact Information

Oleg V. Nepomnuashchiy,

Ph.D. in Engineering, Professor, Head of Computer Science

Dept, School of Space and Information Technologies,

Siberian Federal University.

(room ULK 3-12B) 26, Kirenskogo st, Krasnoyarsk, Russia

e-mail: ONepomnuashy@sfu-kras.ru

Google Scholar page:

https://scholar.google.ru/citations?user=JxdeoasAAAAJ&

hl=ru

 Additional information is available at:

 https://structure.sfu-kras.ru/node/2153

 Tel: +7 391 291 2931

3. Prerequisites

A background in basic programming will help in faster and better

understanding of every topic. Nevertheless, each part of the course includes a short

introduction of methods that are required for its study. Therefore, a graduate

student without the denoted experience must be encouraged to make some

additional efforts in education.

5

4. Course Outline

Week Lectures Seminars/ Assignments Hours

Lec/Lab/HA

Semester 3

1-6 Computer systems and

networks. (Part 1).

Computing systems.

Classification of computing

systems by the way of organizing

parallel processing.

5/8/36

6-12 Computer systems and

networks. (Part 2).

Computing networks.

Purpose, architecture and

principles of building information

- computer networks (ICS).

5/5/36

13-18

Programming languages

and systems. Software

development technology

(Part 1).

Programming languages.

Procedural programming

languages.

8/5/36

Semester 4

1-4

Programming languages

and systems. Software

development technology

(Part 2).

Distributed programming

Processes and their

synchronization.

4/2/2

5-9

Programming languages

and systems. Software

development technology

(Part 3).

Basics of constructing translators.

The structure of the optimizing

translator.

4/2/2

10-13 Operating Systems (Part 1)

The functioning of computing

systems.

Modes of functioning of

computing systems, structure and

functions of operating systems.

5/2/2

14-18 Operating Systems (Part 2)

Interaction of processes. Parallel

processes, generation and control

schemes. Organization of

interaction between parallel and

5/3/3

6

asynchronous processes:

messaging, organization of

mailboxes.

 36 27 180

36 Final Exam 36

4.1 Course requirements

4.1.1 Web-page of the course

Course materials and required reading materials are available on the webpage of the

Elements and devices of computer technology and control systems, SibFU E-

learning portal, www.e.sfu-kras.ru. You must be logged in to access this course.

https://e.sfu-kras.ru/course/view.php?id=27719

4.1.2 Required reading

The main book for this course is The Course Book. It provides students with

all the information they need to master methods and tools for research in science

field.

1. Jon Stokes. Inside the Machine: An Illustrated Introduction to Microprocessors and

Computer Architecture. 1st Edition. ARS Technica, 2010. p.320. SBN-13: 978-

1593276683, ISBN-10:1593276680

2. Steve McConnell. Code Complete: A Practical Handbook of Software Construction.

Microsoft press 2015 p. 855. ISBN-13: 978-0735619678

ISBN-10: 0735619670

3. Max Kanat-Alexander. Code Simplicity: The Fundamentals of Software. O’Reilly

Media, Inc. 2012. p. 65 ISBN-13: 978-1449313890, ISBN-10: 1449313892

4. Donald Knuth. Art of Computer Programming, Volumes 1-4A. Addison-Wisley,

2016.

4.1.3 Course materials

The main book that will guide a student through the course is Mathematical

and software support for computers, complexes and computer networks book.

It contains all of topics of this course according to the schedule. It will provide you

http://www.e.sfu-kras.ru/
https://e.sfu-kras.ru/course/view.php?id=27719

7

with useful links at the end of each chapter that will help graduate students to

improve their understanding of the topics.

4.1.4 Required feedbacks

Graduate students are free to contact the lecturer by email. The name of

department and a number of a group should be written in the subject or in the

beginning of the letter for convenience. More information on how to contact the

lecturer can be found in «Lecturer information» section of this Guide.

Student’s Home or Lab Assignment reports must be attached as a separate pdf

file. Student’s name and group number should be written on the first page of the

file. It is recommended to insert Assembler or C code with short comments for key

elements of the code. Students send this report in electronic form only before the

deadline.

If necessary, the lecturer will schedule a video-conference, upon request.

4.2 Course Structure

Learning Activities Hours

Lectures 36

Practice sessions / Seminars, 27

Self-study Assignments 117

Final Exam (including preparation) 36

Total study hours 216

4.3 Time schedule of the course and course outline

№ Theme Week Learning Activities Hours Home Assignment and Reading

Semester 3

1

Computer systems

and networks.

(Part 1).

1-6 Lecture 1 «Classification of computing systems by the

way of organizing parallel processing. Multiprocessor

and multicomputer systems. Computing clusters.

Problem-oriented parallel structures: matrix computer

systems, systolic structures, neural networks»

5

Course Book Chapter 1. Computer systems

and networks. (Part 1). Answer the test

questions on the topic in the e-course

Lab 1 «matrix computer systems» 8 Design and debug application according to

tasks. Choose a number of tasks in Course

Book annex 1-1.

Home assignment 1 36
Read the book: Max Kanat-Alexander. Code

Simplicity: The Fundamentals of Software.

Finish the Lab 1 and issue a report about.

2

Computer systems

and networks.

(Part 2).

7-12
Lecture 2 «Computing networks. Purpose, architecture

and principles of building information - computer

networks (ICS). Local and global IVS, hardware and

software for combining various networks. Methods and

means of data transmission in IVS, data transmission

protocols Features of the architecture of local networks

(Ethernet, Token Ring, FDDI). Internet network, domain

organization, TCP / IP protocol family. Computer

networks and distributed information processing»

5 Course Book: Chapter 2 Computer systems

and networks. (Part 2). Answer the test

questions on the topic in the e-course

1

№ Theme Week Learning Activities Hours Home Assignment and Reading

Lab 2 «Ethernet» 5 Design and debug application according to

tasks. Choose a number of tasks in Course

Book annex 1-2.

Home assignment 2 36 Read the book: Jon Stokes. Inside the

Machine: An Illustrated Introduction to

Microprocessors and Computer

Architecture.. Finish the Lab 2 and issue a

report about.

3

Programming

languages and

systems. Software

development

technology (Part

1).

13-18
Lecture 3 «Programming languages. Procedural

programming languages. (Fortran, C), Functional

Programming Languages (Lisp), logical programming

(Prolog), object-oriented programming languages (Java).

Procedural programming languages Basic control

structures, program structure. Working with data:

variables and constants, data types (boolean, integer,

floating, character, range and enumeration types,

pointers), data structures (arrays and records).

Procedures (functions) procedure call, parameter passing

(by reference, by value, by result), localization of

variables, side effects. Exception handling. Libraries of

procedures and their use»

8 Course Book: Chapter 3 Programming

languages and systems. Software

development technology (Part 1).. Answer

the test questions on the topic in the e-

course.

Lab 3 «Procedural programming languages» 5 Design and debug application according to

tasks. Choose a number of tasks in Course

Book annex 1-2.

Home assignment 3 36 Read the book: Steven F. Barrett, Daniel J.

Pack. Microchip AVR® Microcontroller

2

№ Theme Week Learning Activities Hours Home Assignment and Reading

Primer: Programming and Interfacing.

Finish the Lab 2 and issue a report about.

Semester 4

4

Programming

languages and

systems. Software

development

technology (Part

2).

1-4 Lecture 4

 «Distributed programming Processes and their

synchronization. Semaphores, Hoare monitors. Object

Oriented Distribution Lane programming CORBA.

Parallel programming over shared memory. Threads.

Oren MP standard interface. Parallelization of sequential

programs. Parallel programming over distributed

memory. Paradigms of RMV and MIMD. Standard MPI

interface»

4 Course Book: Chapter 4 Programming

languages and systems. Software

development technology (Part 2). Answer

the test questions on the topic in the e-course

Lab 4 «Parallel programming» 2

Design and debug application according to

tasks. Choose a number of tasks in Course

Book annex 1-4.

Home assignment 4 2 Read the books: Donald Knuth. Art of

Computer Programming, Volumes 1-4A.

Steve McConnell. Code Complete: A

Practical Handbook of Software

Construction Finish the Lab 4 and issue a

report about.

5 Programming

languages and

systems. Software

5-9
Lecture 5 « Basics of constructing translators. The

structure of the optimizing translator. Intermediate

program representations: sequence of characters,

4 Course Book: Chapter 5 Programming

languages and systems. Software

development technology (Part 3). Answer

3

№ Theme Week Learning Activities Hours Home Assignment and Reading

development

technology (Part

3).

sequence of tokens, syntax tree, abstract syntax tree.

Intermediate presentation levels: high, medium, low.

Intermediate submission forms. Analysis of the source

program in the compiler. Automaton (regular) grammars

and scanning, context free grammars and parsing,

organization of a program symbol table with a block

structure, hash functions. Descending (LL (1) grammars)

and ascending (LR (1) grammars) parsing methods.

Attribute grammars and semantic programs, construction

of an abstract syntax tree. Automatic construction of

lexical and parsers from formal descriptions of

grammars. Lex and uass systems. Gentle system.

Optimization of programs during compilation.

Optimization of basic blocks, cleaning of cycles.

Analysis of control flow graphs and data flow.

Dominance relation and its properties, building the

border of the vertex dominance area, highlighting

strongly connected components of the graph. Building a

dependency graph. Translation of the program into SSA-

representation and back. Global and interprocedural

optimization. Generating object code in compilers.

Retargetable Compilers, cc (Gnu Compiler Collection).

Term rewriting Application of optimization heuristics

(integer programming, dynamic programming) for

automatic generation of object code generators (BEG

systems, Iburg, etc.)»

the test questions on the topic in the e-course

Lab 5 «Intermediate program» 2 Design and debug application according to

tasks. Choose a number of tasks in Course

4

№ Theme Week Learning Activities Hours Home Assignment and Reading

 Book annex 1-5.

Home assignment 5 2 Read the books: Donald Knuth. Art of

Computer Programming, Volumes 1-4A.

Steve McConnell. Code Complete: A

Practical Handbook of Software

Construction Finish the Lab 5 and issue a

report about.

6

Operating Systems

(Part 1)

10-13
Lecture 6 « The functioning of computing systems.

Modes of functioning of computing systems, structure

and functions of operating systems. Basic blocks and

modules. Basic hardware support for operating systems

(OS) functions: interrupt system, memory protection,

address translation mechanisms in virtual memory

systems, channel and peripheral device management.

Types of processes and their control in modern operating

systems. Representation of processes, their contexts,

generation hierarchies, states and interactions.

Multitasking (multi-program) operation mode. Process

control commands. Means of interaction of processes.

The client-server model and its implementation in

modern operating systems. The working set of pages

(segments) of the program, algorithms for its

determination. Control of external devices»

5 Course Book: Chapter 5 Operating Systems

(Part 1). Answer the test questions on the

topic in the e-course

Lab 6 «structure and functions of operating systems »

2 Design and debug application according to

tasks. Choose a number of tasks in Course

Book annex 1-6.

5

№ Theme Week Learning Activities Hours Home Assignment and Reading

Home assignment 6 2 Read the books: Steve McConnell. Code

Complete: A Practical Handbook of

Software Construction. Max Kanat-

Alexander. Code Simplicity: The

Fundamentals of Software. Finish the Lab 6

and issue a report about.

7

Operating Systems

(Part 2)

14-18
Lecture 7 «Interaction of processes. Parallel processes,

generation and control schemes. Organization of

interaction between parallel and asynchronous processes:

messaging, organization of mailboxes. Critical sections,

primitives of mutual exclusion of processes, Dijkstra

semaphores and their extensions. Deadlock problem in

asynchronous process execution, deadlock detection and

prevention algorithms. Operational means of process

control during their implementation on parallel and

distributed computing systems and networks: standards

and software PVM, MPI, OrenMP, POSIX. Single-level

and multi-level disciplines of cyclic servicing of

processes on the central processor, the choice of a

quantum. Data access control. File system, organization,

distribution of disk memory. Management of data

exchange between disk and RAM. Working set of pages

(segments) of the program, algorithms for its

determination. Control of external devices»

5 Course Book: Chapter 7 Operating Systems

(Part 2). Answer the test questions on the

topic in the e-course

Lab 7 « OpenMP»

3 Design and debug application according to

tasks. Choose a number of tasks in Course

Book annex 1-7.

6

№ Theme Week Learning Activities Hours Home Assignment and Reading

Home assignment 7 3 Read the books: Steve McConnell. Code

Complete: A Practical Handbook of

Software Construction. Max Kanat-

Alexander. Code Simplicity: The

Fundamentals of Software. Finish the Lab 7

and issue a report about.

8

Final exam

36 Prepare to final exam. Preparation for

answering exam questions (available at e-

courses and course book). Preparation for

solving control problems using the course

book, main books and the e-course.

5.Assessment

Assessment strategy Points,
max

Evaluation criteria

Tests 10 Test questions for lectures in the e-course

Lab works 40 Lab report

Individual Project 40 Electrical schematics, code, report on the
project, presenting the project

Final exam 10 2 questions and a practical task that
require preparatory reading and
knowledge of the concepts explained

Grade policy for final assessment is:

A (excellent work) 91–100 points

B (above average work) 81–90 points

C (average work) 71–80 points

D (below average work) 50–70 points

F (failed work) < 50 points

The final exam is oral and written test. Students should be able to:

• Answer two short theoretical questions;

• Develop a general algorithm for embedded software according to the

assignment;

• Write a fragment of the program to initialize the built-in nodes of the

microcontroller.

6. Attendance Policy

Graduate students are expected to attend classes regularly. In case of missing

an in-lab activity a student should perform additional work submitted to the

instructor within a week after a class was missed.

1

Every topic involves an assignment. A written report on the assignment

should be submitted within two weeks from the moment students received a list of

problems. The final mark will rely on the same grading policy as for the final exam.

7. Required Course Participation

There are no special requirements for the course participation. The preferred

type of report submission is the electronic one. Students can use the web-version

of the course (link) for a better progress. All problems for solution could be found

there together with text from the course book.

8. Facilities, Equipment and Software
Facilities:

The auditorium is equipped with personal computers with Internet access, as well as a

multimedia projector and an electronic board. The material and technical support of the

discipline includes:

- library fund of GOU VPO "SFU"

- computer workplaces for laboratory studies and testers;

- multimedia equipment for giving lectures, showing presentations.

Software:

MS Office (MS Word, MS PowerPoint, MS Excel), Adobe Acrobat, Adobe Flash

Player или KMPlayer, аудиопроигрыватель AdobeFlash до Winamp, Maxima,

SciLab.

2

Annex 1 Example of Self-Study Assignment

The task: Describe the OpenMP execution model

Solution:

The OpenMP API uses the fork-join model of parallel execution. Multiple threads

of execution perform tasks defined implicitly or explicitly by OpenMP directives.

OpenMP is intended to support programs that will execute correctly both as parallel

programs (multiple threads of execution and a full OpenMP support library) and as

sequential programs (directives ignored and a simple OpenMP stubs library). However,

it is possible and permitted to develop a program that executes correctly as a parallel

program but not as a sequential program, or that produces different results when

executed as a parallel program compared to when it is executed as a sequential program.

Furthermore, using different numbers of threads may result in different numeric

results because of changes in the association of numeric operations. For example, a

serial addition reduction may have a different pattern of addition associations than a

parallel reduction. These different associations may change the results of floating-point

addition.

An OpenMP program begins as a single thread of execution, called the initial

thread. The initial thread executes sequentially, as if enclosed in an implicit task region,

called the initial task region, that is defined by an implicit inactive parallel region

surrounding the whole program.

When any thread encounters a parallel construct, the thread creates a team of itself

and zero or more additional threads and becomes the master of the new team. A set of

implicit tasks, one per thread, is generated. The code for each task is defined by the

code inside the parallel construct. Each task is assigned to a different thread in the team

and becomes tied; that is, it is always executed by the thread to which it is initially

assigned. The task region of the task being executed by the encountering thread is

suspended, and each member of the new team executes its implicit task. There is an

implicit barrier at the end of the parallel construct. Beyond the end of the parallel

construct, only the master thread resumes execution, by resuming the task region that

was suspended upon encountering the parallel construct. Any number of parallel

constructs can be specified in a single program parallel region may be arbitrarily nested

inside each other. If nested parallelism is disabled, or is not supported by the OpenMP

implementation, then the new team that is created by a thread encountering a parallel

construct inside a parallel region will consist only of the encountering thread. However,

if nested parallelism is supported and enabled, then the new team can consist of more

than one thread.

When any team encounters a worksharing construct, the work inside the construct

is divided among the members of the team, and executed cooperatively instead of being

3

executed by every thread. There is an optional barrier at the end of each worksharing

construct. Redundant execution of code by every thread in the team resumes after the

end of the worksharing construct.

When any thread encounters a task construct, a new explicit task is generated.

Execution of explicitly generated tasks is assigned to one of the threads in the current

team, subject to the thread's availability to execute work. Thus, execution of the new

task could be immediate, or deferred until later. Threads are allowed to suspend the

current task region at a task scheduling point in order to execute a different task. If the

suspended task region is for a tied task, the initially assigned thread later resumes

execution of the suspended task region. If the suspended task region is for an untied

task, then any thread may resume its execution. In untied task regions, task scheduling

points may occur at implementation defined points anywhere in the region. In tied task

regions, task scheduling points may occur only in task, taskwait, explicit or implicit

barrier constructs, and at the completion point of the task. Completion of all explicit

tasks bound to a given parallel region is guaranteed before the master thread leaves the

implicit barrier at the end of the region. Completion of a subset of all explicit tasks

bound to a given parallel region may be specified through the use of task

synchronization constructs. Completion of all explicit tasks bound to the implicit

parallel region is guaranteed by the time the program exits.

Synchronization constructs and library routines are available in OpenMP to

coordinate tasks and data access in parallel regions. In addition, library routines and

environment variables are available to control or to query the runtime environment of

OpenMP programs.

OpenMP makes no guarantee that input or output to the same file is synchronous

when executed in parallel. In this case, the programmer is responsible for synchronizing

input and output statements (or routines) using the provided synchronization constructs

or library routines. For the case where each thread accesses a different file, no

synchronization by the programmer is necessary.

4

Annex 2 Example of Pre-Course Test Questions

1. Algorithm concept. Equivalence of these formal models of algorithms. The

concept of algorithmic undecidability.

2. Formal languages and ways of describing them. Classification of formal

grammars. How to use in lexical and parsing?

3. Multiprocessor and multicomputer systems. Computing clusters. Problem-

oriented parallel structures: matrix systems, systolic structures, neural

networks.

4. Methods and means of transferring data to computer systems, data transfer

protocols.

5. Features of the architecture of local networks (Ethernet, Token Ring, FDDI).

6. Internet network, domain organization, ТСР / IP protocol family.

7. Distributed programming. Processes and synchronization. Object-oriented

distributed programming Parallel programming by shared memory. Parallel

programming by distributed memory.

8. Basics of constructing translators. Optimizing translator structure.

Intermediate program representations. Intermediate presentation levels.

9. Analysis of the source program in the compiler. Automatic (regular) grammars

and scanning, context free grammars and parsing, organization of a program

symbol table with a block structure, hash functions. Automatic construction of

lexical and parsers from formal descriptions of grammars.

10. Optimization of programs during compilation Optimization of basic blocks,

cleaning of cycles. Analysis of control flow and data flow graphs Building a

dependency graph. Global and interprocedural optimization.

11. Generation of object code (retargetable) compilers, Recycling terms

optimization heuristics dynamic programming) for automatic generation of

object code generators (systems BEG, Iburg, etc.).

12. Software development and maintenance technology. The life cycle of the

program. Development stages, degree and ways of their automation. Modules,

interaction between modules, hierarchical program structures.

13. Debugging, testing, verification and evaluation of the complexity of programs.

Generation of tests. Test generation systems. Slices of programs (slice, chop)

and their use when debugging programs and for generating tests.

14. Methods for the specification of programs. Schematic, structural, visual

programming User interface development, multimedia interface interaction

environments.

5

6

Annex 3 Outlines of Lab works

(List one. The title)

"SIBERIAN FEDERAL UNIVERSITY"

Institute of Space and Information Technologies

Department of Computer Science

Master's Degree Programs “Digital intelligent control systems”
Group No (Group identifier)

REPORT ON LABORATORY WORK No. (Number of lab)

Theme: (Theme of task).

Tutor: (Tutor’s / Lecture’s Name and Surname).

Student: (Student`s Name and Surname).

Krasnoyarsk, 2020

7

(List two, etc. The progress)

Main aim: (Describe the aim of lab).
The task: (Describe the task of lab).
Solution: (short description (no more than 2-3 pages) of the problem

solving process).

Annex A Diagram(s)

(diagrams and graphs).

Annex B Code(s)

(source code Included comment).

8

Annex 4 Example of Final Oral Exam Questions

1. Types of processes and their management in modern operating systems.

Representation of processes, their contexts, generation hierarchies, states and

interactions. Multitasking (multi-program) operation mode. Process control

commands. Means of process interaction.

2. Parallel processes, generation and control schemes. Organization of interaction

between parallel and asynchronous processes: messaging, organization of

mailboxes.

3. Operational means of process control during their implementation on parallel and

distributed computing systems and networks: standards and software PVM, MPI,

OrenMP, POSIX.

